Copied to
clipboard

G = D8:C23order 128 = 27

6th semidirect product of D8 and C23 acting via C23/C22=C2

p-group, metabelian, nilpotent (class 3), monomial, rational

Aliases: D8:6C23, C8.7C24, C4.12C25, Q16:6C23, D4.9C24, Q8.9C24, SD16:5C23, M4(2):9C23, 2+ 1+4:11C22, 2- 1+4:10C22, D4oD8:7C2, (C2xC8):2C23, D4o(C8:C22), D4oSD16:5C2, C4oD4.54D4, D4.65(C2xD4), C4oD4:3C23, C8oD4:7C22, C4oD8:3C22, Q8.67(C2xD4), Q8o(C8.C22), (C2xD4).337D4, (C2xD4):12C23, (C2xD8):34C22, Q8oM4(2):3C2, (C2xQ8).256D4, (C2xQ8):12C23, C2.47(D4xC23), C8:C22:15C22, C2.C25:6C2, (C2xC4).149C24, C23.358(C2xD4), C4.129(C22xD4), D8:C22:11C2, (C2xSD16):36C22, (C22xD4):51C22, C8.C22:18C22, C22.21(C22xD4), (C2xM4(2)):34C22, (C22xC4).417C23, (C2x2+ 1+4):15C2, (C2xC8:C22):36C2, (C2xC4).670(C2xD4), (C2xC4oD4):59C22, SmallGroup(128,2317)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — D8:C23
C1C2C4C2xC4C22xC4C2xC4oD4C2x2+ 1+4 — D8:C23
C1C2C4 — D8:C23
C1C2C2xC4oD4 — D8:C23
C1C2C2C4 — D8:C23

Generators and relations for D8:C23
 G = < a,b,c,d,e | a8=b2=c2=d2=e2=1, bab=a-1, cac=dad=a3, eae=a5, cbc=a2b, dbd=a6b, ebe=a4b, cd=dc, ce=ec, de=ed >

Subgroups: 1220 in 732 conjugacy classes, 426 normal (13 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2xC4, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, C23, C2xC8, M4(2), D8, SD16, Q16, C22xC4, C22xC4, C2xD4, C2xD4, C2xQ8, C2xQ8, C2xQ8, C4oD4, C4oD4, C24, C2xM4(2), C8oD4, C2xD8, C2xSD16, C4oD8, C8:C22, C8.C22, C22xD4, C22xD4, C2xC4oD4, C2xC4oD4, C2xC4oD4, 2+ 1+4, 2+ 1+4, 2- 1+4, 2- 1+4, Q8oM4(2), C2xC8:C22, D8:C22, D4oD8, D4oSD16, C2x2+ 1+4, C2.C25, D8:C23
Quotients: C1, C2, C22, D4, C23, C2xD4, C24, C22xD4, C25, D4xC23, D8:C23

Permutation representations of D8:C23
On 16 points - transitive group 16T204
Generators in S16
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 16)(2 15)(3 14)(4 13)(5 12)(6 11)(7 10)(8 9)
(1 7)(3 5)(4 8)(9 11)(10 14)(13 15)
(1 7)(3 5)(4 8)(9 15)(11 13)(12 16)
(1 5)(3 7)(9 13)(11 15)

G:=sub<Sym(16)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9), (1,7)(3,5)(4,8)(9,11)(10,14)(13,15), (1,7)(3,5)(4,8)(9,15)(11,13)(12,16), (1,5)(3,7)(9,13)(11,15)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,16)(2,15)(3,14)(4,13)(5,12)(6,11)(7,10)(8,9), (1,7)(3,5)(4,8)(9,11)(10,14)(13,15), (1,7)(3,5)(4,8)(9,15)(11,13)(12,16), (1,5)(3,7)(9,13)(11,15) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,16),(2,15),(3,14),(4,13),(5,12),(6,11),(7,10),(8,9)], [(1,7),(3,5),(4,8),(9,11),(10,14),(13,15)], [(1,7),(3,5),(4,8),(9,15),(11,13),(12,16)], [(1,5),(3,7),(9,13),(11,15)]])

G:=TransitiveGroup(16,204);

41 conjugacy classes

class 1 2A2B···2H2I···2R4A···4H4I···4N8A···8H
order122···22···24···44···48···8
size112···24···42···24···44···4

41 irreducible representations

dim111111112228
type++++++++++++
imageC1C2C2C2C2C2C2C2D4D4D4D8:C23
kernelD8:C23Q8oM4(2)C2xC8:C22D8:C22D4oD8D4oSD16C2x2+ 1+4C2.C25C2xD4C2xQ8C4oD4C1
# reps116688113141

Matrix representation of D8:C23 in GL8(Z)

00000001
00000010
00000-100
0000-1000
00-100000
00010000
10000000
0-1000000
,
00000-100
00001000
00000001
000000-10
01000000
-10000000
000-10000
00100000
,
0-1000000
-10000000
00010000
00100000
0000-1000
00000100
00000010
0000000-1
,
0-1000000
-10000000
000-10000
00-100000
00001000
00000-100
00000010
0000000-1
,
10000000
01000000
00100000
00010000
0000-1000
00000-100
000000-10
0000000-1

G:=sub<GL(8,Integers())| [0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0],[0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0],[0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1],[0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1] >;

D8:C23 in GAP, Magma, Sage, TeX

D_8\rtimes C_2^3
% in TeX

G:=Group("D8:C2^3");
// GroupNames label

G:=SmallGroup(128,2317);
// by ID

G=gap.SmallGroup(128,2317);
# by ID

G:=PCGroup([7,-2,2,2,2,2,-2,-2,477,521,2804,4037,2028,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^8=b^2=c^2=d^2=e^2=1,b*a*b=a^-1,c*a*c=d*a*d=a^3,e*a*e=a^5,c*b*c=a^2*b,d*b*d=a^6*b,e*b*e=a^4*b,c*d=d*c,c*e=e*c,d*e=e*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<